THE ELECTROPHILIC ADDITION OF SELENENYL THIOCYANATES TO OLEFINS

W.J.E. Parr and R.C. Crafts

Malaysian Rubber Producers' Research Association, Tun Abdul Razak Laboratory, Brickendonbury, Hertford, England.

Abstract:- Benzeneselenenyl thiocyanate in methanol reacts with olefins to give adducts; kinetic data for attack upon styrenes are presented.

The addition of benzeneselenenyl chloride¹ to olefins in inert solvents has received considerable attention², and recently the use of benzeneselenenyl thiocyanate in such solvents has been reported^{3,4}. At room temperature we have found methanolic PhSeCl solutions to give UV spectra which remain unchanged for several days, direct solvolysis⁵ not occurring; since beginning our investigation the reaction of PhSeCl with olefins in methanol has been reported⁶, but no kinetic data were given.

The reaction of PhSeCl with KSCN at 25° occasioned an increase in UV absorbance between 400 and 270 nm (ϵ_{340} , PhSeCl = 350; ϵ_{340} , PhSeSCN = 420) and was an equilibrium reaction, reaching 60% conversion after several hours with equimolar reactants ($k_f = 1.21$, $k_r = 0.561 \text{ mol}^{-1} \text{s}^{-1}$). Use of a ten-fold molar excess of KSCN gave complete conversion to PhSeSCN.

Reaction of methanolic PhSeSCN with 2-methylpent-1-ene gave, after immediate workup, an oil whose NMR spectrum indicated the adducts $PhSeCH_2C(OMe)(Me)Pr$, $PhSeCH_2C(NCS)(Me)Pr$ to be present in the ratio 68:32. A similar reaction with styrene gave an NMR spectrum containing signals at 4.75, 4.50, and 4.25 δ , attributable to the PhC<u>H</u> protons of the adducts PhCH(NCS)CH₂SePh, PhCH(SCN)CH₂SePh, and PhCH(OMe)CH₂SePh, present in the ratio 27:9:64. The occurrence of Markownikoff adducts, and the preference for solvent incorporated adducts agrees with related results^{3,6}.

The kinetics of the reaction between methanolic PhSeSCN and some substituted styrenes have been studied by monitoring the UV absorbance at 340 nm; results are shown below. This reaction followed second-order kinetics, being first-order in each reactant (cf. ref. 6).

Olefin	k ₂ (1 mol ⁻¹ s ⁻¹) at 30 ⁰ for PhSeSCN/MeOH	Relative rate	$k_2(1 \text{ mol}^{-1}\text{s}^{-1})$ at 25° for PhSeC1/CH ₂ Cl ₂ ²	Relative rate
Styrene	1.11	1	25	1
α-Me Styrene	2.54	2.3	47.8	1.9
<u>trans</u> -β-Me Styrene	0.143	0.13	7.9	0.32
p-Me Styrene	12.99	11.7		
p-C1 "	0.33	0.3		
p-Br "	0.225	0.2		

PhSeSCN also adds to olefins more slowly than PhSeCl in inert solvents³. Rate measurements made between 30° and 50° gave ΔH^{+} estimates of 8.29 ± 1.80, 8.76 ± 0.69 kcal/mole, and Δs^{+} estimates of -31.13 ± 5.74, -33.90 ± 2.19 cal/K, for attack upon styrene and trans- β -methylstyrene respectively. A Hammett type plot gave a ρ^{+} value of -3.78 for the addition of PhSeSCN to ring-substituted styrenes, larger than that reported² for PhSeCl addition in CH₂Cl₂, perhaps implying a more open ion-like structure in the rate determining transition state.

REFERENCES

- Prepared by the method of H.J. Reich, M.L. Cohen, and P.S. Clark, Org. Syntheses, <u>59</u>, 141.
- G.H. Schmid and D.G. Garrett in "The Chemistry of Double-Bonded Functional Groups, Part 2", Ed. S. Patai, Interscience (1977).
- 3) D.G. Garrett, M.D. Ryan, and M. Ujjainwalla, Can. J. Chem., <u>57</u>, 2145 (1979).
- 4) D.G. Garrett, Can. J. Chem., <u>57</u>, 2180 (1979).
- W.S. Cook and R.A. Donia, J. Amer. Chem. Soc., <u>73</u>, 2275 (1951); W. Jenny, Helv. Chim. Acta, 35, 1591 (1952).
- 6) D.G. Garrett and K. Kabo, Can. J. Chem., <u>58</u>, 1030 (1980).

(Received in UK 26 January 1981)